Building in Stages

- Build formula in stages
- Use cells to hold parts of the equation
- Makes it easier to build complex equation

Consider amortized loan formula:

\[P = R(1 - (1 + (r/n)^n - nt)(r/n)) \]

- Start by identifying the inputs and the result
- Inputs \(P, r, n, t \)
- Solve for \(R \)
 - Let's also compute \(R_{\text{total}} \) and total interest

Spreadsheets 2

Lecture Set 13

Spreadsheet Layout

- Start by labeling input cells
 - “Inputs” (bold, underline, center)
 - Principal, Length of Loan, Payments per Year, Interest Rate
 - Make the column bigger
 - Right-align the labels
- Identify the output cell
 - “Outcome” as above
 - Payment

Sub-Formulas

- Hint – to the right (e.g., column D), use cells for sub-formulas (label in E)
 - Makes calculation easier when formula is complex
 - \(D3 = B6/B7 \)
 - \(D4 = B7^2/B5 \)
 - \(D5 = 1+r = 1+D3 \)
 - \(D6 = ^n-t = D5^2-D4 \)
 - \(D7 = 1 = 1-D6 \)
 - \(D8 = (r/n) = D7/D3 \)
 - \(B10 = B4/D8 \)
 - How about \(R_{\text{total}} \) and total interest?
 - \(B11 = B4^2/D4 \)
 - \(B12 = B11-B10 \)

Example Formula Layout

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Principal</td>
<td>B4/B7</td>
<td>(n)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Length of Loan</td>
<td>B3+1</td>
<td>(1+r)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Interest Rate</td>
<td>B5/B4</td>
<td>(-1)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Payments each Year</td>
<td>1 = 0</td>
<td>((1+r)^n)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Payment</td>
<td>B4/B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Total Paid</td>
<td>B11/B10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Total Interest</td>
<td>B11/B10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plug in Numbers!

- Plug in numbers and see what happens
 - Initially, spreadsheet displays “error”
 - As we fill in numbers, cells are calculated
- Different scenarios, different numbers!
 - Suppose we want to borrow $20,000 for a car at 4.5%
 - We can try different lengths of time for the loan and see what happens to the payment!
 - Try 3, 5, 7 years, about how much?
- Homework asks you to create a similar spreadsheet for Regular Savings
 - Place a long description above about what the scenario is
 - E.g., “I’m going to save $150 a month at 3%, how much will I have in 5 years?”
Copy & Paste

- So you set up one scenario but we want 3
 - Select the cells holding your formulas and labels
 - “Copy”
 - Move the cursor a few cells below your last cell
 - “Paste”

- Notice that the formulas are copied too
 - All cells referenced by the formulas are “adjusted” to refer to the same relative cell
 - Sometimes we don’t want copied formulas to refer to “adjusted” locations
 - You can “lock” a reference in a formula to a row or column by prefacing the name with a $,
 - E.g., A10 is a locked reference to the cell A10, even if the formula is copied to another location

Output to Input

- Output from one scenario can be input to the next
 - Suppose you wanted to save to buy a house
 - You select the price-range of a house today
 - Use inflation formula to find out how much that might cost in, say 5 years
 - Determine how much you’ll need for a downpayment
 - E.g., 10% of the inflated price of the house
 - Let that result be F in the regular savings formula
 - Find D, the regular deposit amount
 - The output of one formula is used as the input to another formula
 - Also note that if you use the same cell for t (time) in both formulas, it’s easy to change the scenario for different time periods – change one value and both calculations remain synchronized